HP's VAV testing focuses mostly on security and uses as its foundation the same recommendations for Android apps,
which are described at https://developer.android.com/topic/security/#security-essentials-checklist. Please make sure
these guidelines have been followed before submitting your app for VAV testing.

In addition, please complete the following HP checklist before submitting your app for VAV. The HP checklist is
updated as HP's recommendations change. Since tests are added continuously, completing the HP checklist does not
guarantee passing VAV.

Use HTTPS for all network communication

Use strong Crypto (See https://blog.devknox.io/best-practices-aes-encryption-in-android)

Don’t store Credentials in the App (See https://developers.hp.com/jetadvantage-link-device/managing-client-
credentials)

Use singleTask/singlelnstance/taskAffinity/allowTaskReparenting very carefully (See
https://www.usenix.org/system/files/conference/usenixsecurityl5/secl5-paper-ren-chuangang.pdf)
Use FLAG_SECURE on all sensitive Activities

Set android:allowBackup to false

Set android:debuggable to false

Don’t log any sensitive data and keep the log information to the minimum at the INFO level

For the exported CP always verify the URI root. Better avoid returning fd

Avoid exporting PreferenceActivity. If required, implement isValidFragment

Set android:usesCleartextTraffic=false in Android manifest file and Networksecurityconfig.xml file
Sign the application with the v2 signature scheme

Avoid using insecure permissions

Turn off long-press in all WebViews displayed

Use androidx.webkit.WebViewAssetLoader to load file content securely

Set android:useEmbeddedDex to true to avoid data tampering

Be sure to target a supported Platform Version (See: https://developers.hp.com/workpath-sdk/platform-versions).
Note: Targeting a Platform Version nearing end of support will be reported as a Medium issue.

Do not make web service calls directly to printer-hosted web services (e.g. OXPd web services).

OooOoaao

O

OO000O0O00OoO0oO0ooOoaa

O

See the following pages for an example VAV report.

Vulnerability
Clear text communication

Description Severity Recommended Actions

It was observed that the application uses clear text communication in the following files: It is recommended to force TLS when transmitting sensitive information. Users
XXXX should be prevented from accessing the page using http (port 80) using re-direction
or by disabling access via port 80. Both NIST 800-52 and PCI DSS v3.1 strongly
recommend upgrade to the latest version of TLS available, TLS 1.3. Or, at a
minimum an upgrade to TLS 1.2.

Clear text traffic is Enabled For App
[android:usesCleartextTraffic=true

]

The app intends to use cleartext network traffic, such as cleartext HTTP, FTP stacks, It is recommended to set android:usesCleartextTraffic="false" in
DownloadManager, and MediaPlayer. The key reason for avoiding cleartext traffic is the lack AndroidManifest.xml.

of confidentiality, authenticity, and protections against tampering; a network attacker can
eavesdrop on transmitted data and also modify it without being detected.

Clear text traffic is Enabled For App
[cleartextTrafficPermitted="true"]

The app intends to use cleartext network traffic, such as cleartext HTTP, FTP stacks,
DownloadManager, and MediaPlayer. The key reason for avoiding cleartext traffic is the lack
of confidentiality, authenticity, and protections against tampering; a network attacker can
eavesdrop on transmitted data and also modify it without being detected.

It is recommended to set cleartextTrafficPermitted="false" in
res\xml\network_security_config.xml

Logging and Monitoring

It was observed that the application logs sensitive information.
File :
XXXX

Applications must not log sensitive information, e.g., passwords, secret keys, tokens,
etc. All sensitive logs must be encrypted.

Janus Vulnerability

It was observed that the application is signed only with v1 signature scheme. If an application
is signed only with v1 signature scheme then app is vulnerable to Janus. Janus allows an
attacker to modify the code in the app without affecting their signatures.

It is recommended to sign the application with v2 signature scheme.

ECB Mode in Encryption Algorithm

It was observed that the app uses ECB mode in Cryptographic encryption algorithm. ECB mode
is known to be weak as it results in the same ciphertext for identical blocks of plaintext.

File:

XXXX

It is recommended to use CBC or GCM mode of encryption.

Exposure of Sensitive Data

It was observed that sensitive information like RSA Private Key and Certificate was exposed in

It is recommended not to expose or hardcode any sensitive information in the code.

the following file:
XXXX
Insecure Permissions It was observed that the following insecure permissions were bled: It is recommended to disable all the insecure permissions.
1) android.permission.MANAGE_ACCOUNTS These permissions were removed in Api Level 23
2) android.permission. AUTHENTICATE_ACCOUNTS Reference
3) android.permission.USE_CREDENTIALS 1)
https://developer.android.com/reference/android/accounts/AccountManager.html
2)
https://developer.android.com/sdk/api_diff/23/changes/android.Manifest.permissi
on.html
Weak Hash Algorithm It was observed that the application uses MD5 hash algorithm in the following files: It is recommended to implement strong hash algorithms like SHA512.

XXXX

MD5 is a weak hash known to have hash collisions.

ACRA Node Server detected

It was observed that ACRA Node server is configured for crash reporting. If common username The following solution are recommended

and password is used by all the printers to access the ACRA server, each printer can gain 1) Use Firebase crashlytics from Google
unauthorized access to the sensitive information in the crash reports of all the printers in the (https://firebase.google.com/docs/crashlytics/)
field. 2) Do not use common username and password by all the printers to access the

ACRA server.

3) Restrict access to the files on ACRA node server.

4) Disable Basic authentication for the web server and do not use hardcoded
credentials.

Also, only WRITE permission should be given on the ACRA server, so that only the crash
reports are logged and cannot be read by unauthorized users.

The server uses Basic authentication, which weakly encodes credentials using the Base64
algorithm, before transmitting them over the network. If access to traffic is gained, the traffic
can be decoded and data stolen.

Exposure of Sensitive Data

It was observed that sensitive information like Client ID and Client Secret was exposed in the
 following file:
XXXX

It is recommended not to expose or hardcode any sensitive information in the code.

Insecure Implementation of SSL

It was observed that hostname verification is disabled when making SSL connections.
Trusting all the certificates or accepting self signed certificates is a critical Security Hole. This
application is vulnerable to MITM attacks.

It is recommended not to use the setDefaultHostnameVerifier() function. The correct
host name should be verified when making a SSL connection.

Insecure Implementation of SSL
(getUnsafeOkHttpClient)

It was observed that the JA Link APIs use insecure communications protocols to interact with
printer functionality. X509 certificate validation is disabled- getUnsafeOkHttpClient.

It is recommended to ensure all API to device communications are carried out using
TLSv1.2 with strong certificate validation.

Sensitive Information Hardcoded

It was observed that sensitive information like API_KEY was hardcoded in the following file:
XXXX

It is recommended not to hardcode any sensitive tokens and keys.

Weak Hash Algorithm

It was observed that the application is signed with SHA TwithRSA. SHA1 hash algorithm is
known to have collision issues.

It is recommended to sign the app with SHA256 hash algorithm.

Long Press not disabled

It was observed that a user could do a long press on a WebView to select text, which would
show a web search button that allowed navigation to anywhere on the internet. Using this it
was able to access everything on google and Play Store.

It is recommended to turn off long press in all WebViews displayed.

Insecure SSL Implementation

WebView ignores SSL Certificate errors and accept any SSL Certificate. This application is
vulnerable to MITM attacks.

It is recommended to implement proper SSL certificate validation.

Application Uses Basic Authenticatio|It was observed that the application uses Basic authentication, which weakly encodes

As the application uses Basic Authentication to share the static client secret, it can

credentials using the Base64 algorithm. If access to traffic is gained, the traffic can be be easily extracted from the apps and allow others to impersonate the app.
decoded and data stolen. Following are the recommendations to fix this issue:
File: XXXX 1) Disable Basic Authentication

2) Avoid using static client secrets in the application. Implement dynamic client
authentication or native app authorization via External User-Agent.

Reference:-

https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7591

Insecure WebView Implementation |Execution of user controlled code in WebView is a critical Security Hole. It is recommended not to set setJavaScriptEnabled(true) and not to use
File: .addJavascriptinterface(" with webview.
XXXX
Broken authentication It was observed that the APl method has username "guest” and blank password. It is recommended to use X509 client certificates rather than HTTP authentication

to
authenticate requests. Or ensure that a secure method is used to establish a unique
password for each user or device.

App request root privileges

It was observed that the app may request root (Super User) privileges 'eu.chainfire.supersu’ in
the following file:

It is recommended not to provide super user privileges to the application. If the file
is not being used remove it from the code base. If the file is required please provide
| justification.

Accessing content from local
resources

Application allows WebView to load local resources from the app data directory or external
storage. It is possible for an attacker to perform File based XSS attacks.

It is recommended to use androidx.webkit.WebViewAssetLoader to load file
content securely.

Insecure Storage Mechanism

It was observed that the application stores password in database in the clear text.
Files:

It is recommended to use Android Keystore to store any sensitive information like
passwords, tokens, etc.

Or use EncryptedSharedPreferences. As EncryptedSharedPreferences uses AES 256
| for encryption and the master key must be stored in Android Keystore.

Bypass Certificate Pinning

Base config is configured to bypass certificate pinning. An app trusts all pre-installed CAs. If any of these CAs were to issue a fraudulent
certificate, the app would be at risk from a man-in-the-middle attack. Some apps
choose to limit the set of certificates they accept by either limiting the set of CAs
they trust or by certificate pinning. Certificate pinning is done by providing a set of
certificates by hash of the public key. A certificate chain is then valid only if the

certificate chain contains at least one of the pinned public keys.

Reference:
https://developer.android.com/training/articles/security-config

Custom trust anchors - user

Base config is configured to trust user installed certificates. It is recommended to limit the set of trusted CAs. An app that does not want to trust
all CAs trusted by user can instead specify its own reduced set of CAs to trust. This
protects the app from fraudulent certificates issued by any of the other CAs.This
reduces the possibility of MITM attacks.

Reference:
https://developer.android.com/training/articles/security-config

Weak RSA Algorithm Application is using PKCS1Padding which is vulnerable to padding oracle attack. For RSA encryption algorithm, the recommended padding scheme is Optimal
File: Asymmetric Encryption Padding (OAEP).
Unauthorized OXPd APIs It was observed that the application is using OXPd APIs which is considered to be It is against HP Policy to use OXPd APIs in Workpath apps.
unauthorized.
File:
Validating Content from Third shouldOverrideUrlLoading - Give the host application a chance to take control when a URL is shouldOverrideUrlLoading (WebView view, String url) method is deprecated so use
Parties about to be loaded in the current WebView. shouldOverrideUrlLoading(WebView, WebResourceRequest) instead.
shouldInterceptRequest - Notify the host application of a resource request and allow the
application to return the data. Do not call WebView#loadUrl(String) with the same URL and then return true. The
It is possible for an attacker to load malicious URLs. correct way to continue loading a given URL is to simply return false, without
calling WebView#loadUrl(String).
Medium |Reference:
1)https://developer.android.com/reference/android/webkit/WebViewClienti#should
OverrideUrlLoading(android.webkit. WebView,%20android.webkit. WebResourceReq
uest)
2)https://developer.android.com/reference/android/webkit/WebViewClientttshould
InterceptRequest(android.webkit.WebView,%20android.webkit.WebResourceReque
st)
Remote WebView debugging is It was observed that remote webview debugging is enabled in the following file: It is not recommended to leave webiew debugging enabled.
enabled. .
WebView debugging enabled allows anyone to read all the files inside the private data Recig
directory.

Screen Capture via 3rd party Apps

It was observed that the app does not protect sensitive screens from being displayed in
screencasts initiated by 3rd party apps.

It is recommended that to protect your apps from being recorded by other apps,
FLAG_SECURE should be used on any views containing sensitive data. Additionally,

Files: Medium using of virtual keyboards should be avoided.
XXXX
CBC Mode in Encryption Algorithm The App uses the en'cryption mode CBC with PKCS5/PKCS7 padding. This configuration is Medium It is recommended to use GCM mode of encryption.
vulnerable to padding oracle attacks.
Application Data can be Backed up |It was observed that [android:allowBackup] flag is missing. It is recommended to set the flag [android:allowBackup] to false.
. I . Medium
By default it is set to true and allows anyone to backup your application data via adb. It
allows users who have enabled USB debugging to copy application data off of the device.
ELf built without protection It was observed that there exists an elf built without Stack Protection. Stack canaries can It is recommended to implement proper Stack Protection while compiling elf files.
greatly increase the difficulty of exploiting a stack buffer overflow because it forces the
attacker to gain control of the instruction pointer by some non-traditional means such as
corrupting other important variables on the stack. Built with option -fstack-protector.
Files :
XXXX Medium
Missing Intent Protection It was observed that an intent-filter exists but no protection was detected for the following It is recommended to protect the Broadcast Receiver to prevent it from being
broadcast Receiver: accessed by any other applications on the device. Use only explicit intents
XXXX
Medium
A Broadcast Receiver is found to be shared with other apps on the device therefore leaving it
accessible to any other application on the device. The presence of intent-filter indicates that
the Broadcast Receiver is explicitly exported.
Missing Intent Protection It was observed that an intent-filter exists but no protection was detected for the following It is recommended to protect the Activity to prevent it from being accessed by any
Activity: other applications on the device. Use only explicit intents
XXXX
Medium
The Activity is found to be shared with other apps on the device therefore leaving it accessible
to any other application on the device. The presence of intent-filter indicates that the services
are explicitly exported.
Debug Enabled It was observed that debugging was enabled on the app: Itis reco ded to disable debugging.
[android:debuggable=true] Medium [android:debuggable=false]
This makes it easier for reverse engineers to hook a debugger to it. This allows dumping a
stack trace and accessing debugging helper classes.
ELf built without Position Found elf built without Position Independent Executable (PIE) flag In order to prevent an attacker from reliably jumping to, for example, a particular
Independent Executable Flag File: exploited function in memory, Address space layout randomization (ASLR)
Medium |randomly arranges the address space positions of key data areas of a process,
including the base of the executable and the positions of the stack, heap and
libraries. Built with option -pie.
Raw SQL Query Executed It was observed that the app uses SQLite Database and execute raw SQL queries. Untrusted It is recommended to use parameterized queries and implement proper input
user input in raw SQL queries can cause SQL Injection. Also sensitive information should be validation.
encrypted and written to the database. Medium
File:
XXXX
Shared functions not protected It was observed that the following shared activities, services and broadcast receivers were
not protected [android:exported=true]:
Itis reco ded to set proper per on the shared activities, services and
These are found to be shared with other apps on the device therefore leaving it accessible to | Medium |broadcast receivers. Set it to signature, so that only applications signed with the
any other application on the device. Also, if the permission is set to normal or dangerous, a same certificate can obtain the permission.
malicious application can request and obtain the permission and interact with the
component.
Application supports Older version |It was observed that Application can be installed on older version of Android (KitKat Android It is recommended to disallow any application to be installed on non-supported
of Android SDK 19) which is not supported by Google anymore. This may help an attacker to exploit if Medium |and deprecated version of Android.
any open vulnerabilities in the older version.
Application Data can be tampered | The application does not enable using the embedded DEX file for app launching. This means Enabling this feature can protect your app from tampering while stored on-device,
[android:useEmbeddedDex] flag is |the app is not taking all possible protections from tampering. By default Medium |but can slow down app launch times. To enable it, set the

missing.

[android:useEmbeddedDex] flag is set to false.

[android:useEmbeddedDex=true] in AndroidManifest.xml.

Logging Enabled

It was observed that the application logs sensitive information.
File :
XXXX

It is recommended that the application should never log sensitive data.

Launch Mode of Activity is not
standard

It was observed that the launch mode of the following activities is not standard:
XXXX

An Activity should not be having the launch mode attribute set to
"singleTask/singlelnstance" as it becomes root Activity and it is possible for other
applications to read the contents of the calling Intent.

It is recommended to use the "standard” launch mode attribute when sensitive
information is included in an Intent.

WAKE_LOCK permission enabled

It was observed that android.permission.WAKE_LOCK was enabled. This would prevent user
session from timing out.

It is recommended to disable android.permission.WAKE_LOCK

The remote server exposes the
internal IP address

It was observed that it was possible to obtain the internal IP address or internal network
name due to a vulnerability in the installed server. The server exposes internal IP addresses
that are usually hidden or masked behind a Network Address Translation (NAT) firewall or a
proxy server.

Files:
XXXX

It is recommended not to expose internal IP addresses.

Insecure Random Number Generatoi

It was observed that the app uses an insecure Random Number Generator in the following

file:
XXXX

It is recommended to implement a cryptographic pseudo random number
generators which can generate an output that is more difficult to predict

TaskAffinity is set

It was observed that the TaskAffinity is set for the following activities:

It is recommended to always use the default setting keeping the affinity as the
package name in order to prevent sensitive information inside sent or received
Intents from being read by another application.

App can write to App Directory

It was observed that App can write to App Directory (Context.MODE_PRIVATE) in the following
files:
XXXX

It is recommended to encrypt the sensitive information.

